skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Guo, Qingli"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep Neural Networks (DNNs) have shown phenomenal success in a wide range of real-world applications. However, a concerning weakness of DNNs is that they are vulnerable to adversarial attacks. Although there exist methods to detect adversarial attacks, they often suffer constraints on specific attack types and provide limited information to downstream systems. We specifically note that existing adversarial detectors are often binary classifiers, which differentiate clean or adversarial examples. However, detection of adversarial examples is much more complicated than such a scenario. Our key insight is that the confidence probability of detecting an input sample as an adversarial example will be more useful for the system to properly take action to resist potential attacks. In this work, we propose an innovative method for fast confidence detection of adversarial attacks based on integrity of sensor pattern noise embedded in input examples. Experimental results show that our proposed method is capable of providing a confidence distribution model of most of popular adversarial attacks. Furthermore, our presented method can provide early attack warning with even the attack types based on different properties of the confidence distribution models. Since fast confidence detection is a computationally heavy task, we propose an FPGA-Based hardware architecture based on a series of optimization techniques, such as incremental multi-level quantization and etc. We realize our proposed method on an FPGA platform and achieve a high efficiency of 29.740 IPS/W with a power consumption of only 0.7626W. 
    more » « less